Kitakyushu Initiative (KI) for a Clean Environment
Fourth Meeting of the KI Network
25-26 June 2007, Kitakyushu, Japan

Integrating energy in urban planning and CDM opportunities in abating air pollution

Jessie L. Todoc

CEERD
Centre for Energy Environment Resources Development
Outline

• About CEERD—cooperating with cities and municipalities
• The EIUP project—integrating energy in urban planning
• Calaca Biogas project—financing local energy-environment initiative through local sources of finance
• CDM and urban air pollution—partnerships enhancing synergies in urban air quality and Kyoto mechanisms
About CEERD—mission statement

• To provide information and knowledge on current issues and developments in energy-environment affecting the Asia and Pacific region in the framework of consulting and research projects sponsored by international and national agencies and even the private sector.

• To develop and manage technical assistance or economic cooperation projects bringing together technical expertise from Europe and within the Asian region; public and private stakeholders in energy and environment industries; and donor and international cooperation agencies.
The EIUP project

EC-ASEAN ENERGY FACILITY PROGRAMME

Contracting-Authority

EU contract

EU-Contractor management

Terms of reference

Partners international

Supporting

United Nations Economic and Social Commission for Asia and the Pacific

United in ASEAN: Denmark, Greece, Thailand, Austria, Laos, Philippines, Vietnam

Cities: Luang Prabang (Laos), Naga City (Philippines), CanTho (Vietnam), Laos, Thailand, Denmark, Greece, Thailand, Austria

Terms of reference

MoUs

Cities in ASEAN:

Partners international

Austria
EIUP—partner cities

Naga City (Philippines)
Area: 84.48 sq. km.
Pop’n: 150,000
Location: 377 km south of Manila
Nationally and internationally renowned for participative local governance

Luang Prabang City (Lao PDR)
Area: 780 sq km
Pop’n: 75,959
Location: 425 km north of Vientiane
Center of tourism development in Lao PDR

Can Tho City (Vietnam)
Area: 1,390 sq km
Pop’n: 1.127 mn
Location: 160 km south of HCMC
National Model for Sustainable City Development
EIUP methodology

1. **Socio-economic City Profile**
 - to provide sufficient information about the existing situation in social, economic, environmental and energy-related aspects, from which the city starts its efforts of EIUP

2. **Energy and Environment**

3. **Stakeholder Analysis**
 - to identify the scope of required integration under the view of pressing problems

4. **Definition of problems and targets**

5. **Option finding**
 - to clarify options under the view of their feasibility and implementation aspects and make an action plan

6. **Action Plan**
Key results—opportunities in energy and environment

• Potential for development of decentralized RES systems
• National government supports power supply companies to deal with service improvement
• Political support from the city government to energy efficiency and RES
• National legislation supports development of local energy resources through various fiscal and non-fiscal incentives
• Improvement of quality of energy supply
• Waste-to-energy project development and implementation
Key results—stakeholder analysis

• Practically all sectors of local economy are the stakeholder of EIUP
• Common expectation of these sectors is to achieve an adequate, reliable, and low-cost energy supply
• Some sectors have potential for developing and investing in renewable energy sources and energy efficiency
• Role of general public and final consumers in policy development, implementation and monitoring, and increasing social acceptability of energy projects
• Lack of awareness and capacity on energy technologies, finance and regulation permeating most sectors
Key results—problem analysis

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Reliability of electricity supply</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>2. Lack of comprehensive policies and energy management</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>3. Insufficient use of alternative energy sources</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>4. Not all communities are connected to power supply</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>5. Insufficient use of alternative motor fuels</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>6. Insufficient extension of energy conservation audits</td>
<td>A</td>
<td></td>
</tr>
</tbody>
</table>

Legend:

A—problem with big pressure and urgent need for solution
B—problem of great importance that should be solved in the medium term
C—important but does not need urgent solution
Key results—strategies and action plans

• Statement of EIUP policy
• Motto
• Vision
• Goals and corresponding action plans
 – Inclusion of “EIUP” in city development planning
 – Waste-to-energy project
 – Expansion of energy audits and conservation campaign
 – Local development of available renewable energy sources and applicable technologies
EIUP—ingredients of success

• Partner cities’ expectations of EIUP
• Political commitment (to environment-friendly initiatives)
 – Dedicated office in urban environmental management
 – Local initiatives and accomplishments
 – Active participation in international urban environmental networks
• Organization of local EIUP teams
Calaca Biogas

Calaca, Batangas
Area: 112.71 sq km
Pop’n: 58,086
Number of households: 11,306
Estimated waste generation: 2,900 tons per year

- **Objective**: To build the capacity of the LGU of Calaca, Batangas to operate and maintain a biogas facility as a renewable energy alternative using biodegradable solid wastes.

- **Partners**: IRG – Philippines, ECN (Denmark), Centric Austria International
Calaca Biogas—waste handling options

Technology Options
• Sorting
• Composting
• Anaerobic digestion

MSW Program
• Long-term plan
• IEC
Calaca Biogas—financing sources

International financing sources
- WB
- ADB
- KFW
- GTZ
- JBIC
- Etc.

Local financing sources
- LBP
- DBP

L
G
U
S
CURB-AIR—background and objective

• Urban air pollution is a key concern for Asian cities
• Strong sectoral overlap in the sources of urban air pollution and CO₂
• Global carbon market offers opportunities for financing CO₂ emission reduction measures in developing countries through the CDM
• Synergies in reducing urban air pollution and CO₂ emissions
• Through CDM additional financial resources might be directed to urban air quality measures
CURB-AIR—partner Cities

Jinan (China)
Area: 8,177 km²
Pop’n: 5.9 m (2004)
Capital of Shandong Province

Bangalore (India)
Area: 696.17 km²
Pop’n: 5.28 m (2007)
Capital of State of Karnataka

Bangkok (Thailand)
Area: 1,568 km²
Pop’n: 10 m (2007)

Jakarta (Indonesia)
Area: 661.52 km²
CURB-AIR—partners

Supported by:

Coordinated by:

Partners:
AQ/CDM case studies*

- Bangalore
 - Ethanol Diesel Blend as fuel substitute in Karnataka State Road Transport Corp fleet
- Bangkok
 - Planning and implementation of bus reform and BRT
- Jakarta
 - Improvement of the TransJakarta BRT
- Jinan
 - Developing a BRT system in Jinan

* In progress
Bangkok BRT—part of bus system reform

Bus Rapid Transit
- Major Investment
- Minimum Benefits
- May not attract greater patronage
- Limited system benefits

Bus System Reform
- Maximum benefits for investment made
- Has core efficiencies
- Will attract patronage by providing good alternative to car use

Without Bus System Reform
- Not viable due to slow bus speeds
- Will see declining patronage as speeds decline
- Limited system benefits

Without BRT

Source: OTP
Bangkok BRT—combining features of rail and bus systems

Rail Mass Transit
- Current Coverage 43 km. (Elevated (BTS) 23 km. and Subway (MRTA) 20 km.)
- Provide safe, punctual convenience transport

But
- High investment cost (about 1,400 MB./km. For elevated and 3,000 MB/km. for subway)

Bus System
- Consists of 249 routes incorporating
 - 238 lines of BMTA buses
 - 11 lines of Micro buses

But
- Use the same right of way as road traffic thus cannot control travel time and service

Source: BMA
BRT CDM projects—GHG emission reduction impacts

• New buses: Units with less emissions per km
• Large buses: Units with less emissions per transported passenger
• Higher occupancy rate: more efficient transport
• Modal switch: from taxis, motor bikes or cars to buses
• Technology and/or fuel change: usage of bio-fuels, gas, or hybrids

Source: Gruetter (2007)
Kitakyushu Initiative (KI) for a Clean Environment
Fourth Meeting of the KI Network
25-26 June 2007, Kitakyushu, Japan

Thank you!

Jessie L. Todoc
E-mail: j.todoc@ceerd.net
Appendix—CDM and BRT
CDM in transport—types of projects

- Projects reducing emissions per kilometer—fuel switch, technology vehicle change, behavioral change (supply side), infrastructure change
- Projects reducing emissions per unit transported (efficiency improvements)—mode switch, use of larger units, improved occupancy rates
- Projects reducing trips

Source: Gruetter (2007)
CDM in transport—methodologies proposed so far

- Fuel switch
- Efficiency improvements (within a transport mode)
- Modal switch

Source: Dalkmann et. al. (2007)
Bus Rapid Transit (BRT)

• “...a mass transit system using exclusive right of way lanes that mimic the rapidity and performance of metro systems but utilise bus technology rather than rail vehicle technology.”

BRT—common features

• Exclusive right of way lanes
• Rapid boarding and alighting
• Free transfers between lines
• Pre-board fare collection and fare verification
• Enclosed stations that are safe and comfortable
• Clear route maps, signage, and real-time information displays
• Modal integration at stations and terminals
• Clean technologies
• Excellent marketing and customer service

BRT CDM projects

• TransMilenio Bogota, Colombia
• Pereira, Colombia
• Cali, Colombia
• Quito, Colombia
• Panama City
• Insurgentes, Mexico

Source: Gruetter (2007)